Numerical Solutions of 2-D Steady Incompressible Flow in a Driven Skewed Cavity

نویسندگان

  • E. Erturk
  • B. Dursun
چکیده

The benchmark test case for non-orthogonal grid mesh, the “driven skewed cavity flow”, first introduced by Demirdžiü et al. [5] for skew angles of 30 D D and 45 D D , is reintroduced with a more variety of skew angles. The benchmark problem has non-orthogonal, skewed grid mesh with skew angle (D ). The governing 2-D steady incompressible NavierStokes equations in general curvilinear coordinates are solved for the solution of driven skewed cavity flow with nonorthogonal grid mesh using a numerical method which is efficient and stable even at extreme skew angles. Highly accurate numerical solutions of the driven skewed cavity flow, solved using a fine grid (512 ̄512) mesh, are presented for Reynolds number of 100 and 1000 for skew angles ranging between15 165 D d d D D .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow

In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...

متن کامل

Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers

Numerical calculations of the 2-D steady incompressible driven cavity flow are presented. The NavierStokes equations in streamfunction and vorticity formulation are solved numerically using a fine uniform grid mesh of 601 × 601. The steady driven cavity solutions are computed for Re ≤ 21,000 with a maximum absolute residuals of the governing equations that were less than 10−10. A new quaternary...

متن کامل

Numerical Study of Flow and Heat Transfer in a Square Driven Cavity

A numerical approach called “SIMPLER” is used to investigate the  flow and heat transfer characteristics in a square driven cavity. The two-dimensional incompressible Navier-Stokes equations were solved and the results are depicted as contour plots of stream function, vorticity, and total pressure for Reynolds numbers from 1 to 10000. At the higher values of Reynolds number, an inviscid core re...

متن کامل

Discussions on driven cavity flow and steady solutions at high Reynolds numbers

The numerical solutions of 2-D steady incompressible flow in a driven cavity are presented. The Navier-Stokes equations in streamfunction and vorticity variables are solved simply with Successive Over Relaxation (SOR) method. Using a very fine grid mesh with 1025×1025 points, the steady driven cavity flow is solved for Re 20,000. For accuracy, the iterations are carried out on the streamfunctio...

متن کامل

External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method

The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/physics/0505121  شماره 

صفحات  -

تاریخ انتشار 2005